Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cochrane Database Syst Rev ; 8: CD015021, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1981526

ABSTRACT

BACKGROUND: High efficacy in terms of protection from severe COVID-19 has been demonstrated for several SARS-CoV-2 vaccines. However, patients with compromised immune status develop a weaker and less stable immune response to vaccination. Strong immune response may not always translate into clinical benefit, therefore it is important to synthesise evidence on modified schemes and types of vaccination in these population subgroups for guiding health decisions. As the literature on COVID-19 vaccines continues to expand, we aimed to scope the literature on multiple subgroups to subsequently decide on the most relevant research questions to be answered by systematic reviews. OBJECTIVES: To provide an overview of the availability of existing literature on immune response and long-term clinical outcomes after COVID-19 vaccination, and to map this evidence according to the examined populations, specific vaccines, immunity parameters, and their way of determining relevant long-term outcomes and the availability of mapping between immune reactivity and relevant outcomes. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, the Web of Science Core Collection, and the World Health Organization COVID-19 Global literature on coronavirus disease on 6 December 2021.  SELECTION CRITERIA: We included studies that published results on immunity outcomes after vaccination with BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, Sputnik V or Sputnik Light, BBIBP-CorV, or CoronaVac on predefined vulnerable subgroups such as people with malignancies, transplant recipients, people undergoing renal replacement therapy, and people with immune disorders, as well as pregnant and breastfeeding women, and children. We included studies if they had at least 100 participants (not considering healthy control groups); we excluded case studies and case series. DATA COLLECTION AND ANALYSIS: We extracted data independently and in duplicate onto an online data extraction form. Data were represented as tables and as online maps to show the frequency of studies for each item. We mapped the data according to study design, country of participant origin, patient comorbidity subgroup, intervention, outcome domains (clinical, safety, immunogenicity), and outcomes.  MAIN RESULTS: Out of 25,452 identified records, 318 studies with a total of more than 5 million participants met our eligibility criteria and were included in the review. Participants were recruited mainly from high-income countries between January 2020 and 31 October 2021 (282/318); the majority of studies included adult participants (297/318).  Haematological malignancies were the most commonly examined comorbidity group (N = 54), followed by solid tumours (N = 47), dialysis (N = 48), kidney transplant (N = 43), and rheumatic diseases (N = 28, 17, and 15 for mixed diseases, multiple sclerosis, and inflammatory bowel disease, respectively). Thirty-one studies included pregnant or breastfeeding women. The most commonly administered vaccine was BNT162b2 (N = 283), followed by mRNA-1273 (N = 153), AZD1222 (N = 66), Ad26.COV2.S (N = 42), BBIBP-CorV (N = 15), CoronaVac (N = 14), and Sputnik V (N = 5; no studies were identified for Sputnik Light). Most studies reported outcomes after regular vaccination scheme.  The majority of studies focused on immunogenicity outcomes, especially seroconversion based on binding antibody measurements and immunoglobulin G (IgG) titres (N = 179 and 175, respectively). Adverse events and serious adverse events were reported in 126 and 54 studies, whilst SARS-CoV-2 infection irrespective of severity was reported in 80 studies. Mortality due to SARS-CoV-2 infection was reported in 36 studies. Please refer to our evidence gap maps for more detailed information. AUTHORS' CONCLUSIONS: Up to 6 December 2021, the majority of studies examined data on mRNA vaccines administered as standard vaccination schemes (two doses approximately four to eight weeks apart) that report on immunogenicity parameters or adverse events. Clinical outcomes were less commonly reported, and if so, were often reported as a secondary outcome observed in seroconversion or immunoglobulin titre studies. As informed by this scoping review, two effectiveness reviews (on haematological malignancies and kidney transplant recipients) are currently being conducted.


Subject(s)
COVID-19 , Hematologic Neoplasms , Vaccines , Ad26COVS1 , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Child , Female , Humans , Pregnancy , SARS-CoV-2 , Vaccination
2.
Cochrane Database Syst Rev ; 8: CD015270, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1971203

ABSTRACT

BACKGROUND: Vaccines are effective in preventing severe COVID-19, a disease for which few treatments are available and which can lead to disability or death. Widespread vaccination against COVID-19 may help protect those not yet able to get vaccinated. In addition, new and vaccine-resistant mutations of SARS-CoV-2 may be less likely to develop if the spread of COVID-19 is limited. Different vaccines are now widely available in many settings. However, vaccine hesitancy is a serious threat to the goal of nationwide vaccination in many countries and poses a substantial threat to population health. This scoping review maps interventions aimed at increasing COVID-19 vaccine uptake and decreasing COVID-19 vaccine hesitancy. OBJECTIVES: To scope the existing research landscape on interventions to enhance the willingness of different populations to be vaccinated against COVID-19, increase COVID-19 vaccine uptake, or decrease COVID-19 vaccine hesitancy, and to map the evidence according to addressed populations and intervention categories. SEARCH METHODS: We searched Cochrane COVID-19 Study Register, Web of Science (Science Citation Index Expanded and Emerging Sources Citation Index), WHO COVID-19 Global literature on coronavirus disease, PsycINFO, and CINAHL to 11 October 2021. SELECTION CRITERIA: We included studies that assess the impact of interventions implemented to enhance the willingness of different populations to be vaccinated against COVID-19, increase vaccine uptake, or decrease COVID-19 vaccine hesitancy. We included randomised controlled trials (RCTs), non-randomised studies of intervention (NRSIs), observational studies and case studies with more than 100 participants. Furthermore, we included systematic reviews and meta-analyses. We did not limit the scope of the review to a specific population or to specific outcomes assessed. We excluded interventions addressing hesitancy towards vaccines for diseases other than COVID-19. DATA COLLECTION AND ANALYSIS: Data were analysed according to a protocol uploaded to the Open Science Framework. We used an interactive scoping map to visualise the results of our scoping review. We mapped the identified interventions according to pre-specified intervention categories, that were adapted to better fit the evidence. The intervention categories were: communication interventions, policy interventions, educational interventions, incentives (both financial and non-financial), interventions to improve access, and multidimensional interventions. The study outcomes were also included in the mapping. Furthermore, we mapped the country in which the study was conducted, the addressed population, and whether the design was randomised-controlled or not. MAIN RESULTS: We included 96 studies in the scoping review, 35 of which are ongoing and 61 studies with published results. We did not identify any relevant systematic reviews. For an overview, please see the interactive scoping map (https://tinyurl.com/2p9jmx24) STUDIES WITH PUBLISHED RESULTS Of the 61 studies with published results, 46 studies were RCTs and 15 NRSIs. The interventions investigated in the studies were heterogeneous with most studies testing communication strategies to enhance COVID-19 vaccine uptake. Most studies assessed the willingness to get vaccinated as an outcome. The majority of studies were conducted in English-speaking high-income countries. Moreover, most studies investigated digital interventions in an online setting. Populations that were addressed were diverse. For example, studies targeted healthcare workers, ethnic minorities in the USA, students, soldiers, at-risk patients, or the general population.  ONGOING STUDIES Of the 35 ongoing studies, 29 studies are RCTs and six NRSIs. Educational and communication interventions were the most used types of interventions. The majority of ongoing studies plan to assess vaccine uptake as an outcome. Again, the majority of studies are being conducted in English-speaking high-income countries. In contrast to the studies with published results, most ongoing studies will not be conducted online. Addressed populations range from minority populations in the USA to healthcare workers or students. Eleven ongoing studies have estimated completion dates in 2022.   AUTHORS' CONCLUSIONS: We were able to identify and map a variety of heterogeneous interventions for increasing COVID-19 vaccine uptake or decreasing vaccine hesitancy. Our results demonstrate that this is an active field of research with 61 published studies and 35 studies still ongoing. This review gives a comprehensive overview of interventions to increase COVID-19 vaccine uptake and can be the foundation for subsequent systematic reviews on the effectiveness of interventions to increase COVID-19 vaccine uptake.  A research gap was shown for studies conducted in low and middle-income countries and studies investigating policy interventions and improved access, as well as for interventions addressing children and adolescents. As COVID-19 vaccines become more widely available, these populations and interventions should not be neglected in research. AUTHORS CONCLUSIONS: We were able to identify and map a variety of heterogeneous interventions for increasing COVID-19 vaccine uptake or decreasing vaccine hesitancy. Our results demonstrate that this is an active field of research with 61 published studies and 35 studies still ongoing. This review gives a comprehensive overview of interventions to increase COVID-19 vaccine uptake and can be the foundation for subsequent systematic reviews on the effectiveness of interventions to increase COVID-19 vaccine uptake.  A research gap was shown for studies conducted in low and middle-income countries and studies investigating policy interventions and improved access, as well as for interventions addressing children and adolescents. As COVID-19 vaccines become more widely available, these populations and interventions should not be neglected in research.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , Child , Health Personnel/education , Humans , Randomized Controlled Trials as Topic , Vaccination
3.
Cochrane Database Syst Rev ; 8: CD015061, 2021 08 23.
Article in English | MEDLINE | ID: covidwho-1813447

ABSTRACT

BACKGROUND: Individuals dying of coronavirus disease 2019 (COVID-19) may experience distressing symptoms such as breathlessness or delirium. Palliative symptom management can alleviate symptoms and improve the quality of life of patients. Various treatment options such as opioids or breathing techniques have been discussed for use in COVID-19 patients. However, guidance on symptom management of COVID-19 patients in palliative care has often been derived from clinical experiences and guidelines for the treatment of patients with other illnesses. An understanding of the effectiveness of pharmacological and non-pharmacological palliative interventions to manage specific symptoms of COVID-19 patients is required. OBJECTIVES: To assess the efficacy and safety of pharmacological and non-pharmacological interventions for palliative symptom control in individuals with COVID-19. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (including Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (PubMed), Embase, ClinicalTrials.gov, World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), medRxiv); Web of Science Core Collection (Science Citation Index Expanded, Emerging Sources); CINAHL; WHO COVID-19 Global literature on coronavirus disease; and COAP Living Evidence on COVID-19 to identify completed and ongoing studies without language restrictions until 23 March 2021. We screened the reference lists of relevant review articles and current treatment guidelines for further literature. SELECTION CRITERIA: We followed standard Cochrane methodology as outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We included studies evaluating palliative symptom management for individuals with a confirmed diagnosis of COVID-19 receiving interventions for palliative symptom control, with no restrictions regarding comorbidities, age, gender, or ethnicity. Interventions comprised pharmacological as well as non-pharmacological treatment (e.g. acupressure, physical therapy, relaxation, or breathing techniques). We searched for the following types of studies: randomized controlled trials (RCT), quasi-RCTs, controlled clinical trials, controlled before-after studies, interrupted time series (with comparison group), prospective cohort studies, retrospective cohort studies, (nested) case-control studies, and cross-sectional studies. We searched for studies comparing pharmacological and non-pharmacological interventions for palliative symptom control with standard care. We excluded studies evaluating palliative interventions for symptoms caused by other terminal illnesses. If studies enrolled populations with or exposed to multiple diseases, we would only include these if the authors provided subgroup data for individuals with COVID-19. We excluded studies investigating interventions for symptom control in a curative setting, for example patients receiving life-prolonging therapies such as invasive ventilation.  DATA COLLECTION AND ANALYSIS: We used a modified version of the Newcastle Ottawa Scale for non-randomized studies of interventions (NRSIs) to assess bias in the included studies. We included the following outcomes: symptom relief (primary outcome); quality of life; symptom burden; satisfaction of patients, caregivers, and relatives; serious adverse events; and grade 3 to 4 adverse events. We rated the certainty of evidence using the GRADE approach.  As meta-analysis was not possible, we used tabulation to synthesize the studies and histograms to display the outcomes.  MAIN RESULTS: Overall, we identified four uncontrolled retrospective cohort studies investigating pharmacological interventions for palliative symptom control in hospitalized patients and patients in nursing homes. None of the studies included a comparator. We rated the risk of bias high across all studies. We rated the certainty of the evidence as very low for the primary outcome symptom relief, downgrading mainly for high risk of bias due to confounding and unblinded outcome assessors. Pharmacological interventions for palliative symptom control We identified four uncontrolled retrospective cohort studies (five references) investigating pharmacological interventions for palliative symptom control. Two references used the same register to form their cohorts, and study investigators confirmed a partial overlap of participants. We therefore do not know the exact number of participants, but individual reports included 61 to 2105 participants. Participants received multimodal pharmacological interventions: opioids, neuroleptics, anticholinergics, and benzodiazepines for relieving dyspnea (breathlessness), delirium, anxiety, pain, audible upper airway secretions, respiratory secretions, nausea, cough, and unspecified symptoms.  Primary outcome: symptom relief All identified studies reported this outcome. For all symptoms (dyspnea, delirium, anxiety, pain, audible upper airway secretions, respiratory secretions, nausea, cough, and unspecified symptoms), a majority of interventions were rated as completely or partially effective by outcome assessors (treating clinicians or nursing staff). Interventions used in the studies were opioids, neuroleptics, anticholinergics, and benzodiazepines.  We are very uncertain about the effect of pharmacological interventions on symptom relief (very low-certainty evidence). The initial rating of the certainty of evidence was low since we only identified uncontrolled NRSIs. Our main reason for downgrading the certainty of evidence was high risk of bias due to confounding and unblinded outcome assessors. We therefore did not find evidence to confidently support or refute whether pharmacological interventions may be effective for palliative symptom relief in COVID-19 patients. Secondary outcomes We planned to include the following outcomes: quality of life; symptom burden; satisfaction of patients, caregivers, and relatives; serious adverse events; and grade 3 to 4 adverse events. We did not find any data for these outcomes, or any other information on the efficacy and safety of used interventions. Non-pharmacological interventions for palliative symptom control None of the identified studies used non-pharmacological interventions for palliative symptom control. AUTHORS' CONCLUSIONS: We found very low certainty evidence for the efficacy of pharmacological interventions for palliative symptom relief in COVID-19 patients. We found no evidence on the safety of pharmacological interventions or efficacy and safety of non-pharmacological interventions for palliative symptom control in COVID-19 patients. The evidence presented here has no specific implications for palliative symptom control in COVID-19 patients because we cannot draw any conclusions about the effectiveness or safety based on the identified evidence. More evidence is needed to guide clinicians, nursing staff, and caregivers when treating symptoms of COVID-19 patients at the end of life. Specifically, future studies ought to investigate palliative symptom control in prospectively registered studies, using an active-controlled setting, assess patient-reported outcomes, and clearly define interventions. The publication of the results of ongoing studies will necessitate an update of this review. The conclusions of an updated review could differ from those of the present review and may allow for a better judgement regarding pharmacological and non-pharmacological interventions for palliative symptom control in COVID-19 patients.


Subject(s)
COVID-19/therapy , Palliative Care , Aged , Aged, 80 and over , Bias , COVID-19/diagnosis , Humans , Male , SARS-CoV-2 , Systematic Reviews as Topic
4.
BMC Public Health ; 22(1): 352, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1690929

ABSTRACT

BACKGROUND: To reduce COVID-19 infection rates during the initial stages of the pandemic, the UK Government mandated a strict period of restriction on freedom of movement or 'lockdown'. For young people, closure of schools and higher education institutions and social distancing rules may have been particularly challenging, coming at a critical time in their lives for social and emotional development. This study explored young people's experiences of the UK Government's initial response to the pandemic and related government messaging. METHODS: This qualitative study combines data from research groups at the University of Southampton, University of Edinburgh and University College London. Thirty-six online focus group discussions (FGDs) were conducted with 150 young people (Southampton: n = 69; FGD = 7; Edinburgh: n = 41; FGD = 5; UCL: n = 40; FGD = 24). Thematic analysis was conducted to explore how young people viewed the government's response and messaging and to develop recommendations for how to best involve young people in addressing similar crises in the future. RESULTS: The abrupt onset of lockdown left young people shocked, confused and feeling ignored by government and media messaging. Despite this, they were motivated to adhere to government advice by the hope that life might soon return to normal. They felt a responsibility to help with the pandemic response, and wanted to be productive with their time, but saw few opportunities to volunteer. CONCLUSIONS: Young people want to be listened to and feel they have a part to play in responding to a national crisis such as the COVID-19 epidemic. To reduce the likelihood of disenfranchising the next generation, Government and the media should focus on developing messaging that reflects young people's values and concerns and to provide opportunities for young people to become involved in responses to future crises.


Subject(s)
COVID-19 , Adolescent , Communicable Disease Control , Humans , Information Dissemination , SARS-CoV-2 , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL